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Abstract

"To make a decision, a system must assign value to each of its avail-
able choices. In the human brain, one approach to studying valuation
has used rewarding stimuli to map out brain responses by varying
the dimension or importance of the rewards. However, theoretical
models have taught us that value computations are complex, and so
reward probes alone can give only partial information about neural
responses related to valuation. In recentyears, computationally prin-
cipled models of value learning have been used in conjunction with
noninvasive neuroimaging to tease out neural valuation responses
related to reward-learning and decision-making. We restrict our re-
view to the role of these models in a new generation of experiments
that seeks to build on a now-large body of diverse reward-related
brain responses. We show that the models and the measurements
based on them point the way forward in two important directions:
the valuation of time and the valuation of fictive experience.
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INTRODUCTION

Decision-making can be difficult. Choosing
the best decision in the face of incomplete
information is a notoriously hard problem,
and the quest to find neural and psycholog-
ical mechanisms that guide human choice re-
mains in its early stages. Despite decades of
research on how decisions are represented
and evaluated—both in psychology and in
behavioral neuroscience—many fundamental
questions remain unanswered, ranging from
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the concrete to the abstract. For example,
How does the human brain represent basic
tasks like finding food, mates, and shelter?
How are potentially competing desires rep-
resented? Which aspects of the current state
of affairs do we consider when making a deci-
sion? How does the brain choose a motor plan
best suited for a particular task? Such ques-
tions, and many related ones, have generated
large areas of specialized research. These are
difficult questions because they require good
guesses about the exact problems that the hu-
man brain is trying to solve, as well as good
guesses about the mathematical formalisms
and computational algorithms that best cap-
ture the solutions the brain implements.

In the simplest terms, human decision-
making can be framed as an energetic problem
that pits an organism’s investment for each
choice against the immediate and long-term
returns expected. This trade-off is a funda-
mental one and has long acted as a selective
constraint shaping the evolution of biological
decision-making mechanisms. Consequently,
we should expect the mechanisms that esti-
mate the value of decisions to be crafty and
efficient. Two supporting players lie behind
every decision: representation and valuation.
"To make efficient choices, the brain must rep-
resent the available choices and calculate the
differential value of each, including both near-
term and distal future rewards.

One particularly promising approach to
these issues is the use of disciplined theoreti-
cal work to guide carefully designed imaging
experiments. Accordingly, we have chosen
to structure this review around a family of
computational models from the field of ma-
chine learning that has been used to de-
sign experiments, interpret results, and pre-
dict neural responses that underlie valuation
during decision-making. In this synthesis, we
(@) provide a selective review of neuroimaging
work that identifies a consistent set of neu-
ral responses to reward delivery in which re-
wards range from juice squirts to preferences
for cultural artifacts; () describe models of
the relationship between value and reward;



Annu. Rev. Neurosci. 2006.29:417-448. Downloaded from arjournals.annualreviews.org
by University of Texas- HOUSTON ACADEMY OF MEDICINE on 06/21/06. For personal use only.

(¢) illustrate the biological plausibility of these
models through a review of work that links
neural responses to specific parametric fea-
tures of these models; and (d) extend the mod-
els to address computations that value time
and fictive experience.

NEURAL RESPONSES TO
REWARD

Human decision-making provides a natural
behavioral domain in which to probe the
neural substrates of valuation; however, the
lack of good neural probes in humans forced
most of the early work on human choice
into the theoretical domain (von Neumann &
Morgenstern 1944, Bush & Mosteller 1955,
Simon 1955, Luce & Raiffa 1957). This early
theoretical work fell on the shared bound-
ary of mathematical psychology, economics,
and what is now called behavioral economics
(Camerer 2003). In contrast, early neural
work on valuation focused on its close cousin:
reward. The difference between the two is
simple but critical. Reward refers to the im-
mediate advantage accrued from the outcome
of a decision (e.g., food, sex, or water). In con-
trast, the value of a choice is an estimate about
how much reward (or punishment) will result
from a decision, both now and into the fu-
ture. Thus, value incorporates both immedi-
ate and long-term rewards expected from the
decision. So reward is more like immediate
feedback, whereas value is more like a judg-
ment about what to expect.

Behaviorally, reward can be easily mea-
sured and quantified. To an experimental
psychologist or behavioral neuroscientist, a
reward is simply a positive reinforcer, some
external event that makes a target behavior
more likely in the future. Neurally, early work
on reward processing identified brain regions
in mammals (mainly rodents) that, when stim-
ulated, appeared to be a neural analogue of ex-
ternal rewards to a behaving animal (Olds &
Milner 1954, Olds 1958, Olds 1962, Phillips
& Olds 1969, Brauth & Olds 1977). In re-

cent years, this seminal work has been cast

more explicitly in the language of decision-
making (Herrnstein & Prelec 1991, Shizgal
1997, Gallistel et al. 2001, Gallistel 2005).
Until recently, however, work on reward-
processing and decision-making did not make
direct contact with neural mechanisms of val-
uation in humans—thatis, the computation of
value by humans (see Shizgal 1997 for review).
Three developments have recently changed
this situation. The first was detailed elec-
trophysiological work on reward-processing
in behaving monkeys during tasks involv-
ing learning (Ljungberg et al. 1992, Quartz
et al. 1992, Schultz et al. 1993, Montague
et al. 1996, Schultz et al. 1997, Hollerman
& Schultz 1998, Schultz 2000, Schultz &
Dickinson 2000, Waelti et al. 2001, Bayer
& Glimcher 2005, Tobler et al. 2005) and
decision-making (Platt & Glimcher 1999,
Gold & Shadlen 2001, Shadlen & Newsome
2001, Glimcher 2002, Gold & Shadlen
2002, Huk & Shadlen 2003, Glimcher 2003,
McCoy et al. 2003, Dorris & Glimcher 2004,
Sugrue et al. 2004, Rorie & Newsome 2005,
Sugrue et al. 2005). This electrophysiology
work helped lay the foundation for more re-
cent work that has exploited the second major
development: the advent of modern human
neuroimaging techniques that can be used to
measure the physical correlates of neural ac-
tivity during learning and decision-making
(Posner et al. 1988; Ogawa et al. 1990a,b,
1992, 1993; Belliveau et al. 1990, 1991). The
third development was the importation of
formal algorithms for reward-learning from
computer science and engineering; in partic-
ular, the field of machine learning (Sutton &
Barto, 1998; Dayan & Abbott 2001). These
models provide a theoretical framework for
interpreting the monkey electrophysiologi-
cal studies, and more recently have begun to
guide reward expectancy experiments in hu-
man subjects using noninvasive neuroimag-
ing techniques. A new generation of reward-
learning and decision-making experiments
now profits from a growing connection to
these formal models of valuation and learn-
ing. In this review, we focus on this interplay
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between modeling work and neuroimaging
studies in humans. For context, we begin by
briefly reviewing the rapidly expanding set
of imaging results on reward-processing in
humans.

A large and ever growing number of neu-
roimaging studies have examined brain re-
sponses to rewarding stimuli. This work be-
gan by using primarily appetitive stimuli as
reward probes (for a review see O’Doherty
2004) but has progressed to more abstract re-
wards such as money (Breiter etal. 2001, Elliot
et al. 2003, Knutson et al. 2003), cultural re-
wards such as artand branded goods (Erk et al.
2002, Kawabata & Zeki 2004, McClure et al.
2004, O’Doherty et al. 2006), and even social
rewards such as love and trust (Bartels & Zeki
2004, King-Casas et al. 2005, Delgado et al.
2005). Despite the diversity of these rewards,
experiments have consistently identified a
common set of neural structures that activate
to these stimuli, including the orbitofrontal
cortex (OFC), ventral striatum, and ventro-
medial prefrontal cortex (VMPFC). These
structures comprise a ventral valuation net-
work (VVN) consistently activated across an
array of rewarding dimensions. For example,
the orbitofrontal cortex (OFC) has been im-
plicated in hedonic experience across all sen-
sory modalities (Rolls 2000), including gus-
tatory (Zald et al. 2002, Kringelbach et al.
2003), olfactory (O’Doherty et al. 2000, Rolls
etal. 2003a), auditory (Blood & Zatorre 2001,
Blood et al. 1999), somatosensory (Francis
et al. 1999, Rolls et al. 2003b), and visual
stimuli (Lane et al. 1999, Royet et al. 2000).
Similarly, activation in regions of the striatum
and OFC has been observed in response to
a wide range of rewards. At the same time,
these constituents of the VVN are sensitive
to different aspects of rewarding stimuli: Ar-
eas in the striatum and OFC are particularly
responsive to rewards that change, accumu-
late, or are learned over time (Koepp et al.
1998, Delgado et al. 2000, Berns et al. 2001,
Elliottetal. 2003, Knutson et al. 2003, Galvan
et al. 2005, Sugrue et al. 2005), whereas ac-
tivity in VMPFC scales with reward value
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(Knutson et al. 2001, O’Doherty et al.
2003).

Recently, imaging studies of reward re-
sponses have extended beyond appetitive
stimuli to include cultural objects and so-
cial stimuli. Two recent studies investigat-
ing neural responses to aesthetic stimuli,
such as art and bodily beauty (Aharon et al.
2001, Kawabata & Zeki 2004), have impli-
cated OFC, whereas two other studies have
also associated preference judgments to art
with activity in prefrontal cortex (Cela-Conde
et al. 2004) and striatum (Vartanian & Goel
2004). The receipt of cultural objects such as
art cannot be considered a primary reward,
yet these objects nonetheless elicit activity
in the same neural structures also acti-
vated by receipt of primary reinforcers. Like-
wise, delivery of brand information of pre-
ferred consumer goods also activates reward-
processing regions within VMPFC, OFC, and
striatum (Erk et al. 2002, Paulus & Frank
2003, McClure et al. 2004). The study of
beverage preference by McClure and col-
leagues demonstrated that behavioral pref-
erence, when dissociated from brand pref-
erence, scaled linearly with the VMPFC
response even when the primary reward (sug-
ared, caffeinated beverage) was kept exactly
the same (McClure etal. 2004). Finally, recent
work has also found responses in the striatum
and VMPFC to the receipt of rewarding so-
cial stimuli. For example, images of romantic
partners elicit responses in the striatum, par-
ticularly during the early stages of a romance
(Bartels & Zeki 2004, Aron etal. 2005). More-
over, responses in VMPFC and striatal struc-
tures also scale with the humor of jokes (Goel
& Dolan 2001, Mobbsetal. 2003, Mobbs etal.
2005).

REINFORCEMENT-LEARNING
MODELS

Paralleling the progress on imaging and neu-
rophysiological studies of reward processing,
computational accounts of human decision-
making capable of connecting with behavioral
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and brain responses have matured. Although
different in detail, all reinforcement-learning
models share some basic assumptions. The
first assumption is that organisms (learn-
ing agents) possess goals. In reinforcement-
learning models, agents learn to achieve goals
under the guidance of reinforcement signals.
This process is made explicit by represent-
ing the learning problem as a space of states
through which the agent moves either using
actual motor actions or using internal changes
in state (like mental rehearsal). With each
movement, or state transition, the agent re-
ceives a reinforcement signal (a signed scalar
value) that combines two sources of infor-
mation: (#) information about immediate re-
wards (or punishments), and (§) information
about the long-term opportunities for reward
(or cost) associated with the state change.
Consequently, reinforcement signals combine
short-term feedback from immediate rewards
with longer-term judgments about likely fu-
ture rewards to yield an assessment (a number)
that ranks the relative worth of the agent’s
state. So these signals are equipped to act
reasonably like advice, combining immediate
feedback with the best guess about how good
the future is likely to be based on past ex-
perience. Theoretical work on reinforcement
learning is vast and extends far beyond the
scope of this review (for accessible reviews, see
Sutton & Barto 1998, Kaelbling et al. 1996,
Dayan & Abbott 2001). Daw (2003) gives
an excellent overview of almost all the neu-
robiologically relevant uses of reinforcement
learning.

Two fundamental components of any
reinforcement-learning model are the repre-
sentation of the problem faced by the agent
as a state space (the representation piece) and
a value associated with each state in the space
(the valuation piece). These are illustrated in
Figure 1. The value of a state represents the
reward that can be expected from that state av-
eraged over all time points from now into the
distant future. These values are silent, stored
numbers. To probe these silent values, exper-
iments must extract them indirectly through

Outgoing actions
‘ / from St+1

a

A

\S,, 15l
t+197t
mmm Actual experience
=== Fictive experience

Figure 1

»
»

Representation of states, values, and actions. A: States are represented by
vertices of the flat underlying grid. The current estimated value of each
state is represented by the corresponding height above the plane. These
values must be estimated from experience and stored in the brain. B:
Actions (a¢) are chosen, and this results in the agent observation of a new
state (Se+1) and a reward (r,). Learning is more efficient if both experiential
learning signals (generated by red actions) and fictive learning signals
(generated by information about green actions) influence changes in the
estimated values of each state. Recent neuroimaging experiments have
uncovered neural correlates of counterfactuals, an observation consistent
with the existence of fictive error signals (Coricelli et al. 2005).

observation of the agent’s actions in combi-
nation with some knowledge of the underly-
ing state space. An important feature of this
approach is that it does not assume any spe-
cific structure for the underlying state space.
There is no natural way to read out values di-
rectly unless we know ahead of time that the
agent will always act to choose states with the
highest value.

Another equally fundamental element of
reinforcement-learning models is the mecha-
nism that guides the update of the values of
states on the basis of experience. This up-
date is guided by reinforcement signals. Rein-
forcement signals are constructed by combin-
ing information about immediate reward and
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changes in value that occur owing to changes
in the agent’s state. In the popular temporal
differences (TD) error formulation, the guid-
ance signal, commonly called “the critic”
(Barto et al. 1983; Sutton & Barto 1998), is
written as

reward prediction error (TD error)
= 7(S) + y V(Sit1) — V(S), L.

where S, is the current state and S, | is the next
state to which the animal has transitioned af-
ter taking action #,. The parameter 7 can be
thought of as time, or any variable that pro-
vides a way to order the states visited. V' is
the value function that reflects the long-term
value of each state (discounted by the param-
eter 0 <y < 1), and r is the immediately ex-
perienced reward associated with a given state
(Dayan 1992, 1993, 1994a,b; Daw 2003).

Reinforcement signals like the TD error
can be used to criticize (i.e., evaluate) the
change in state and can also be used to di-
rect the selection of new actions (i.e., follow-
ing a behavioral policy). More specifically, a
behavioral policy can be described as a func-
tion P, that maps states s to actions # and
depends on the system having some estimate
of the value function V. Suppose that these
estimates of the value function are available
and stored in the nervous system as “weights”
W, ., which represent the value of taking ac-
tion « given that the system is in state s. A
common stochastic policy used in TD learn-
ingistolet P, ;bealogitor “softmax” function
that prescribes the probability of taking action
@ in state s,

e Was

Zk oW

We are all familiar with evaluation func-

P{t,.f =

tions but may not realize it. Recall the chess-
playing program Deep Blue, which beat world
chess champion Gary Kasparov in a match
in 1997 (Hsu 2002). The heart of Deep Blue
was its evaluation function, its analog to the
value functions that we have been describing.
In this case, the evaluation function evaluated
different moves (actions) given the current
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layout of the chess board (the current state
of the chess board). For each possible chess
move, the evaluation function produced a dif-
ferent number ranking the relative value of
that move. Now chess is an extremely com-
plex game, so the evaluation function could
not look through every possible move. In-
stead, it had tricks built in to let it estimate
primarily those chess moves (actions) with
the highest value given the current layout of
the chess board (the state). Of course Deep
Blue had another trick as well: the capability
of looking up ~200,000,000 different chess
moves per second for any given board lay-
out. And although Kasparov’s brain could not
explicitly look up chess moves at that break-
neck rate, he was still able to keep the match
close (3.5-2.5), so his brain must have dis-
covered a more efficient representation of
the problem allowing him to find quickly the
high-value actions (chess moves). That’s ex-
actly the spirit of reinforcement learning’s use
of state space (board layout), action (chess
move), and policy (the rule that picks the next
chess move given the board layout) descrip-
tions here. And it is also important to keep in
mind that we are describing the simplest form
of a reinforcement-learning system. More
complex reinforcement-learning models are
now being applied to problems of behavioral
control in uncertain environments—models
that should be able to guide imaging experi-
ments in human subjects (Daw et al. 2005; see
below).

The TD algorithm has been used effec-
tively to address a variety of neurobiological
and psychological phenomena, from the firing
pattern of dopamine neurons in the ventral
tegmental area in response to cues that predict
rewards (Quartz et al. 1992, Montague et al.
1993, Montague & Sejnowski 1994, Friston
et al. 1994, Houk et al. 1995, Montague
et al. 1996, Schultz et al. 1997; for review
see Montague et al. 2004) to the patterns of
neural activity observed for striatal structures
in human neuroimaging experiments (e.g.,
O’Dobherty et al. 2003; McClure et al. 2003;
also see King-Casas etal. 2005). However, one
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problem with the simplest TD model is that it
can be brittle. Its success depends heavily on
having an appropriately rich representation
of the state space, and a behavioral policy (a
mechanism for selecting actions) that is prop-
erly matched to the value function over that
space (see Bertsekas & Tsitsiklis 1996, Dayan
& Abbott 2001). A learning system, includ-
ing the human brain, must know about the
problem for the TD algorithm to be a useful
learning method.

An important variant of TD learning,
called Q-learning, addresses some of these
problems and provides a natural frame-
work for biological experiments where actions
and states are closely linked (Watkins 1989,
Watkins & Dayan 1992). First, it learns a value
function (called the Q function) not just over
states, but over state-action pairs. Second, itis
less dependent on the exact behavioral policy
than is the TD algorithm sketched above. Itis
more forgiving of exact choices made as long
as a decent policy is followed on average. As
long as the states are visited with adequate fre-
quency (i.e., the system has sufficiently broad
experience), Q-learning can converge to op-
timal or near-optimal solutions (Watkins &
Dayan 1992; see Daw 2003). Q-learning was
proposed by Watkins in the late 1980s and
unified separate approaches to reinforcement
learning. The interested reader should con-
sult some of the original sources or reviews,
especially the now-classic book by Sutton &
Barto (1998). The Q-learning algorithm, with
an estimate Q of the Q function, may not
initially be very accurate (i.e., has little ini-
tial information about the comparative value
of the various action-state pairs). However,
with experience, the algorithm refines this
value function through repetition of the three
basic steps outlined below.

1. Select action # on the basis of an initial
value function Q and current state s.

2. Observe reward 7 and new state s'.

3. Update estimate Q of Qand sets =5’

Aswe mentioned, Q-learning will learn the
optimal value function for a range of policies.

However, the best policy is the one that picks
the action with the largest value, just like a
chess move with the highest rank in Deep
Blue’s evaluation function. That is, “in state
5, take the action # that yields the largest Q”:

policy(s) = max Q(s, a); 3.

“max over #” means pick the # that gives the
biggest estimate 0 ofQ.Soin Q-learning, the
model depends on the underlying states only
indirectly.

The algorithm used to update the estimate
Q of the optimal value function Q follows the
same basic prescription as the TD algorithm
(see Watkins 1989, Dayan 1992). The optimal
Q function over state-action pairs satisfies a
recursive equation (Bellman equation)

QGra) =7 a)+y mﬁax Q1. 4), 4

where 7y is a time discount parameter, and the
max (maximum) function as before picks the
action with the greatest estimated value from
all the actions 4 available in state s5,,;. This
expression holds strictly only for the optimal
Q. The agent’s problem is to learn this opti-
mal Q. The Q-learning algorithm does this by
assuming that the agent maintains some esti-
mate O of the optimal Q and then updates this
estimate iteratively using the reinforcement
signal 7 that it receives for a given action 4,
taken from a given state s, in a manner very
similar to the TD learning algorithm:

AQ(fz, ap) = h|r(ss, ar)
+y max Q@1 @) = QG an)l. 5.

where A, is the learning rate. Brain responses
that correlate with this kind of experienced re-
ward prediction error signal have been found
in the striatum during conditioning experi-
ments in humans and are reviewed shortly.
Furthermore, such signals shift from one part
of the striatum to another depending on
whether a task is passive (no action is required
to receive reward) or active (i.e., one or more
actions are required to receive reward).
Despite the greater robustness to behav-
ioral strategies, Q-learning also suffers from

www.annualreviews.org o Imaging Valuation Models in Human Choice

423



Annu. Rev. Neurosci. 2006.29:417-448. Downloaded from arjournals.annualreviews.org
by University of Texas- HOUSTON ACADEMY OF MEDICINE on 06/21/06. For personal use only.

424

a limitation shared with TD learning: it is
influenced only by rewards and actions that
are actually experienced. As a consequence,
an animal using this algorithm would learn
only from its own actions and experienced re-
wards. Itis well known, however, that adaptive
organisms ranging from bees to humans use
counterfactual (fictive) information. That is,
they learn from what might have been (Roese
& Summerville 2005) as well as what has come
to pass.

AN ABUNDANCE OF CRITICS:
THE NEED FOR FICTIVE
LEARNING SIGNALS

When foraging for food, animals explicitly
and implicitly share information about what
might have been. For example, consider ex-
plicit information sharing. Honeybees live in
hives and forage for nectar and pollen as
sources of raw material for the hive (Oster &
Wilson 1978). Once a forager returns to the
hive, she shares information about her expe-
rience with those that gather around her. In
so doing, she is communicating what could
have been to other foragers or would-be for-
agers had they sampled the flower patches that
she has already experienced. How should the
recipients of this information respond? First,
we must note that the recipients of this in-
formation must already possess the capacity
to respond to counterfactual information ap-
propriately. Given that this capacity is intact,
the recipient bees should update their esti-
mates of these unvisited patches (provided
that they consider the communicator to be
telling the truth). In a hive, bees have a strong
genetic incentive to communicate the truth to
one another. This explicit information shar-
ing allows the entire hive to learn at a much
higher rate than any individual forager could.
It does not matter exactly how this sharing is
implemented in each bee’s brain; the impor-
tant issue is the tendency of the hive mem-
bers to treat another individual’s experience
as though it was their own. The same kind of
information sharing can also take place inci-
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dentally during foraging of groups of animals
that are not genetically related. One animal
sees another animal finding grub worms un-
der specific kinds of rocks and updates its own
estimate of the value of those rocks as predic-
tors of rewards. In this case, the recipient of
the information must have an adequate model
of itself and the other animal to understand
how to use the information to update its in-
ternal value function on the basis of what it
might have had.

These examples highlight the fact that
adaptive learners, including humans, can ben-
efit by sensing what might have been, compar-
ing it with what actually was the case, and us-
ing this comparison to influence learning and
subsequent decision-making. Q-learning can
similarly exploit signals related to actions not
taken if the following simple modification is
made:

Z AQ(X,,;Z)Z AO(ftsﬂt)

a € {all actions}

+ F(actions not taken from state s,). 6.

Here, the update in the estimates of the
Q value function depends not just on dif-
ferences between expectations and experi-
ence (first term on right; red action-states
in Figure 1) but also on some function F
of fictive actions not taken (second term
on right; green action-states in Figure 1).
Lohrenz and colleagues have called this ex-
tended form “counterfactual Q-learning” and
hypothesized two distinct fictive learning sig-
nals (errors) contributing linearly to the func-
tion F (T. Lohrenz, personal communica-
tion):

Z AQ(X“d)Z AO(Xtaﬂt)

a€fall actions}

+ 3 AQG. i)+ AQG,. best 4,)

fictive
actions 7y

= experience critic + fictive critic
+ supervisor critic. 7.
The first error signal is the experiential er-

ror, that is, the ongoing temporal difference
between expected rewards and experienced
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rewards. This term is the direct analog to the
TD error described above. The second term
is a fictive critic signal. Itis an error signal that
speeds learning by using any available infor-
mation about other actions that might have
been taken (e.g., through observation of oth-
ers’ actions in a comparable state), along with
estimates of the associated rewards. The sec-
ond term expresses the fact that the learner
should use information about other possible
actions and outcomes because it is a cheaper
way to learn about the world; a lot of in-
formation return on a small investment (e.g.
just a brief glance). At first glance, the fic-
tive error signal might be thought of as re-
flecting regret and/or relief. Such emotions
are associated with a constellation of other
internal states and behavioral responses that
extend well beyond the capacities built into
the fictive error signals we have characterized
here. Consequently, we propose that the fic-
tive error signals outlined here probably form
only one part of the complex emotion of re-
gret/relief; however, our review should illus-
trate that even emotions could in principle be
captured by computational descriptions. The
third term represents an ongoing comparison
between the best action that could have been
taken in terms of reward outcomes and the
one actually taken. This term is equivalent to
the supervised actor-critic architecture pro-
posed by Rosenstein & Barto (2004), which
uses an internal supervisor for reinforcement.
This architecture was proposed to remedy
problems that simple reinforcement-learning
models have with complicated decision prob-
lems that may require a task to be super-
vised from different levels. The third term of
Equation 7 provides a natural basis for such a
supervisor critic by informing the system af-
ter the fact, whether an action was as good as
it could have been when compared with the
best action.

In summary, we have reviewed rein-
forcement-learning models central to the de-
sign and interpretation of reward expectancy
experiments, in particular, the TD model.
We note that the TD model is too simple

to account for the range of reward learn-
ing that a real organism carries out, and we
have reviewed a more sophisticated family
of reinforcement-learning models called Q-
learning. Both frameworks possess the im-
plicit limitation that they learn only via the
actual experience of the learner, and so we
outlined a generalization of Q-learning to
counterfactual Q-learning. This generaliza-
tion predicts the existence of two different
fictive learning signals that we refer to as
the fictive critic and supervisor critic, respec-
tively. The former provides a natural way to
speed learning, and the latter can act as an
internal supervisor for reinforcement learn-
ing. These models emerged originally from
work in machine learning literature, where
they have been successfully used to design in-
creasingly sophisticated autonomous agents
that can learn about and adapt to their en-
vironment. Their use in neuroscience, how-
ever, has been to provide a formal framework
within which to describe, in semiquantita-
tive terms, the valuation processes that drive
learning and decision-making in natural or-
ganisms. Recently, this framework has been
put to use in predicting patterns of neural
activity that should be associated with valua-
tion, decision-making, and learning processes
in the human brain if they are accurately de-
scribed by the reinforcement-learning mech-
anisms outlined above. In the following sec-
tions, we review empirical studies that have
begun to test these predictions.

IMAGING VALUATION AND
LEARNING: PREDICTION
ERROR SIGNALS

Most applications of reinforcement-learning
models to brain function make the assump-
tion that the neuromodulator dopamine im-
plements the reinforcement-learning signal
(Dayan 1994, Montague et al. 1996, Schultz
etal. 1997, Dayan & Abbott 2001, Montague
et al. 2004; also see Montague et al. 1995).
Dopamine has long been associated with the
idea of reward but historically was assumed
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to mediate directly the reward value of
an event. However, reinforcement-learning
models have helped differentiate the con-
cept of reward from a reward-dependent
learning signal, and accumulating empiri-
cal evidence—both from neurophysiological
studies as well as more recent neuroimag-
ing studies—strongly support the idea that
dopamine release is associated with the learn-
ing signal rather than (or at least in addition
to) the reward itself. There is now overwhelm-
ing evidence, both from direct measurements
of dopaminergic spike trains and from fast
electrochemical measurements of dopamine
transients, that phasic changes in dopamine
delivery carry a reward prediction error signal
(for reviews see Schultz & Dickinson 2000,
Montague et al. 2004; also see Lavin et al.
2005).

Evidence also shows that phasic changes
in dopamine delivery carry information about
novelty to target structures; however, this is
not surprising. Both novelty and prediction
errors are needed by an adaptive learning sys-
tem that must forage in an uncertain environ-
ment for food and mates, a fact highlighted
by theoretical efforts to deal directly with the
computational meaning of novelty responses
(Dayan et al. 2000, Kakade & Dayan 2002,
Yu & Dayan 2005). The most compelling
of these findings demonstrate that, although
phasic dopamine release is observed in re-
sponse to the delivery of an unpredictable re-
ward, dopamine release is greater in response
to a cue that reliably predicts subsequent re-
ward than in response to the reward itself. In
general, dopamine signals are observed to be
strongest in response to unpredictable events
that reliably signal reward delivery and can
even be suppressed when a reward is expected
but not delivered. This pattern of responses
conforms precisely to the behavior of the TD
error, described formally by Equation 1.

The reward prediction error model of
phasic dopamine delivery has motivated a
growing number of functional magnetic res-
onance imaging (fMRI) studies of reward
expectancy in humans (Elliot et al. 2000;
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Knutson et al. 2000, 2001; Berns et al. 2001;
Breiter et al. 2001; Pagnoni et al. 2002;
Seymour et al. 2004; McClure et al. 2003;
O’Doherty et al. 2003, 2006). In neural
structures receiving strong dopaminergic in-
puts, these experiments consistently reveal
responses possessing timing and polarity con-
sistent with a reward prediction error sig-
nal. (We label these semiquantitative predic-
tions because timing and signal polarity do not
represent a fully rigorous dynamical model.)
These regions include dorsal and ventral stria-
tum, nucleus accumbens, and portions of me-
dial frontal, orbitofrontal, and cingulate cor-
tex. Most of these results have used standard
contrastive analyses (using a general linear
model) to identify regions that exhibit statisti-
cally significant hemodynamic responses un-
der conditions predicted by a reward predic-
tion error (Friston et al. 1995a,b). However,
more detailed and direct assessments of the
time course of hemodynamic measurements
within individual trials also show a signal that
faithfully tracks the predicted time course of
negative and positive reward prediction error
signals (McClure et al. 2003).

One exciting finding has been the discov-
ery that the location of activation in the stria-
tum (dorsal versus ventral) in response to re-
ward prediction errors depends on whether
a task requires an action for reward to be
received (as in instrumental conditioning)
or whether no action is required for re-
ward (as in classical conditioning). For action-
contingent rewards, reward prediction error
signals are detected in dorsal and ventral stria-
tum (O’Doherty et al. 2003), whereas for pas-
sive reward presentation, prediction errors
signals are detected only in ventral striatum
(McClure et al. 2003, O’Doherty et al. 2003).
Another domain in which reinforcement-
learning models make interesting, testable
predictions is sequential decision-making un-
der risk (Montague et al. 1996, Egelman
et al. 1998, Elliot et al. 2000, Montague &
Berns 2002). Here, reinforcement-learning
models can be used to make quantitative,
trial-by-trial predictions about the biases that
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decision-makers will have for particular
choices, using their past experience of the re-
wards associated with each choice. For ex-
ample, O’Doherty et al. (2006) used a TD
model to fit the behavior of each individual
subject, and this best-fit TD model was then
used as a linear regressor in the analysis of
the fMRI-measured hemodynamic changes.
As in earlier studies, this revealed activity in
classic dopamine-projection areas, including
the ventral striatum. These studies are signif-
icant for methodological as well as substan-
tive reasons: They represent one of the few
applications of a formally explicit, computa-
tional model of a psychological function to
guide the design and analysis of a neuroimag-
ing experiment. Furthermore, the findings
provide direct evidence for the neural imple-
mentation of the hypothesized, psychological
function that converges closely with findings
from direct neuronal recordings in nonhu-
man species. These findings were made pos-
sible because of the specificity of the predic-
tions, which in turn was possible only because
the psychological function was specified in a
mechanistically explicit, computational form.

SOCIAL ECONOMICS:
VALUATION DURING HUMAN
EXCHANGE

In humans, one of the most important classes
of value computations is evoked by social ex-
changes with other humans, especially so-
cial exchanges with shared economic out-
comes. For the past two decades, three types
of economic games (and their variants), con-
trived to emulate human exchange (trade),
have been used by psychologists and behav-
ioral economists to probe social computa-
tions underlying fairness (ultimatum game;
Camerer 2003, Giith et al. 1982), trust (trust
game; Camerer & Weigelt 1988, Berg et al.
1995), and cooperation (Prisoner’s Dilemma;
Axelrod 1984, Rapoport & Chammah 1965).
These three games probe fundamental psy-
chological mechanisms including those that
(@) detect and respond to fairness (Giith et al.

1982, Forsythe et al. 1994), (b) punish un-
fairness (Fehr & Gichter 2002), and (c) build
and respond to models of the partners par-
ticipating in the exchange (Kreps et al. 1982,
Camerer & Weigelt 1988).

These games are representative of a
broader class of behavioral economic probes
used to test social interactions ranging from
competitiveness to the influence of groups and
time on human decision-making (Camerer
2003, Camerer et al. 2003). These experi-
mental approaches to human exchange take
their theoretical foundation and mathemati-
cal structures from economics and game the-
ory, and in so doing explicitly represent social
rewards and social valuations (Kagel & Roth
1995, Camerer 2003). Just as reinforcement-
learning theory brings from machine learning
a formal framework for studying the influence
of valuation on learning and decision-making,
so game theory brings a class of formal mod-
els to the study of psychological processes
involved in social exchange and their neural
underpinnings. Initial forays in this direction
have begun to produce promising results.

IMAGING SOCIAL EXCHANGE:
UNFAIRNESS PUNISHED AND
COOPERATION REWARDED

One of the simplest probes of fairness is
the one-round ultimatum game (Gith et al.
1982), which might appropriately be renamed
“take it or leave it.” The game is played be-
tween two players. The pair is given some en-
dowment, say $100. The first player proposes
a split of this money to the second player,
who can respond by either accepting the pro-
posal (take it) or rejecting it (leave it). If the
proposal is rejected, neither player receives
any money, thereby hurting both players’ out-
comes, and this hurt is shared, although not
necessarily equally. Findings from this game
reveal a disparity between the rational agent
model of human exchange and the way that
humans actually behave. According to the ra-
tional agent model, proposers should offer
as little as possible, and responders should
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accept whatever they are offered because
something is better than nothing. Thus, an
offer of $1, or even 1¢, should be accepted.
However, this is not what happens when the
experiment is run. Responders routinely re-
ject offers less than about 20% of the endow-
ment, even when this means foregoing consid-
erable sums of money, in some cases as much
as a month’s pay (Henrich etal. 2001). Appar-
ently, this rejection rate results from a prior
representation of the likely rejection rate of
the average player because proposers usually
offer significantamounts, presumably to avoid
unequal splits that they anticipate will be re-
jected (Fehr & Schmidt 1999).

These behaviors are observed even in cir-
cumstances in which partners interact only
once and the interaction is confidential, sug-
gesting that they are driven by strong, highly
ingrained behavioral mechanisms and fair-
ness instincts. That is, the findings suggest
that humans possess fairness instincts that
are exercised even when they incur consider-
able financial expense. It is important to note
that for such fairness instincts to be adap-
tive more generally, participants must pos-
sess mechanisms that engender complemen-
tary behaviors on each side of the exchange.
Proposers must possess a reasonably accurate
prior model of what the responder is likely to
reject, and the responders must be willing to
reinforce such models by enforcing substan-
tial rejection levels, thus insuring fair (higher)
offers from proposers. The problem of how
such interaction instincts evolved is a fasci-
nating evolutionary problem, which has been
explained in terms of the value of reputation
to the individual (Nowak & Sigmund 2005),
as well as the value of altruistic punishment
in stabilizing social cohesion against environ-
mental challenges (Fehr & Simon 2000, Fehr
& Fischbacher 2003). Until recently, however,
it has been difficult to adjudicate between hy-
potheses about the mechanisms driving be-
havior in such interactions. One approach to
this challenge has been to use neuroimaging
methods to identify neural structures engaged
in such tasks and associated with specific be-
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havioral outcomes (e.g., Sanfey et al. 2003, de
Quervain et al. 2004).

In one study, Sanfey & colleagues (2003)
used fMRI to monitor brain responses while
subjects played one-round ultimatum games
against human and computer partners. A sep-
arate condition was also presented to each
subject to control for monetary reinforce-
ment outside the context of the social ex-
change. Three interesting findings emerged
from this study. First, consistent with earlier
behavioral work on this game (Roth 1995,
Camerer 2003), not only did responders con-
sistently reject offers made by human partners
that were less than 20% of the initial endow-
ment but, interestingly, for any given offer
level, rejection rates were higher for human
partners than for computer partners. These
observations are consistent with the view that
the ultimatum game and similar tasks probe
mechanisms designed for mediating exchange
with other humans rather than merely probe
economic mechanisms designed to harvest re-
wards efficiently from the world whether or
not these rewards derive from humans (social
exchange) or from some other source (e.g.,
food sources in a field). Second, the experi-
ment identified neural responses that corre-
lated with the degree of fairness of the offers,
a neural response that was, again, larger for
human partners than for computer partners.
Third, these responses were most prominent
in anterior insula and correlated with behav-
ioral response. For any given level of unfair-
ness, the response in the anterior insula to
unfair human offers was greater than the re-
sponse to unfair computer offers. Further-
more, for offers in the unfair range, the de-
gree of insula activity correlated positively
with the likelihood that the responder would
reject the offer. From other work, we know
that responses in this region of the brain cor-
relate with negative emotional states that at-
tend pain, hunger, thirst, anger, and physi-
cal disgust (Derbyshire et al. 1997, Denton
et al. 1999, Tataranni et al. 1999, Calder
et al. 2001). Thus, physical disgust, and what
one might interpret as moral disgust in the
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ultimatum game, seems to deploy the same
brain systems. This suggests that these two
types of valuations may share common com-
putational components.

The findings from this study suggest that
violations of fairness elicit what can be in-
terpreted as an emotional response (disgust)
that, at least under the laboratory conditions
in which it was elicited (confidential, one-shot
interactions), seems to violate the dictums of
the rational agent model of economic behav-
ior. However, as noted above, this behavior
may reflect a rational computation, over an
evolutionary time scale, to circumstances in-
volving (and relying on) repeated social in-
teractions. In recent years, there have been
numerous demonstrations that humans are
capable of enforcing social norms through ex-
plicit punishment at a cost to the punisher
(Fehr & Gichter 2002, Boyd etal. 2003, Fehr
& Rockenbach 2004).

From an evolutionary perspective, it may
appear odd (at least on the surface) that hu-
mans will undertake costly punishment of a
transgressor of social norms without any ex-
pectation of direct returns—a pattern of be-
havior often referred to as altruistic punish-
ment (Axelrod 1986, Henrich & Boyd 2001).
However, the work of Fehr and colleagues has
produced a substantial set of findings that sup-
port this point (Fehr & Rockenbach 2004).
They suggest that such behaviors provide
evolutionary advantages to social groups by
preserving social cohesion in times of envi-
ronmental stress, when pressures mount for
individuals to act selfishly in their own inter-
est. Although it is beyond the scope of this
review, it is worth noting that this group has
described a formal model of how altruistic
punishment can evolve on the basis of these
principles—a model that might be exploited
to develop a richer, quantitative understand-
ing of the factors that engage such altruis-
tic behaviors. At the same time, more precise
knowledge of the mechanisms that drive such
behavior may help inform the theory. The
findings from the Sanfey et al. (2003) study
suggest one set of mechanisms that responds

aversively to violations of fairness. However,
such behavior may also employ endogenous
brain mechanisms of positive reinforcement
to enforce these and other behavioral algo-
rithms (see King-Casas et al. 2005 and sec-
tion below for direct evidence to this effect in
arelated game). Recent work by Fehr and his
colleagues addresses this possibility.

Using PET imaging, de Quervain and col-
leagues (2004) tested the hypothesis that the
anticipation and/or execution of punishment
that enforced a social norm would be associ-
ated with activity in reward-processing brain
structures. Participants in their experiment
had the opportunity to punish other partic-
ipants who chose not to reciprocate in an
economic exchange game. They found that
punishing a defector correlated with activa-
tion in regions of the striatum similar to those
that have been observed in response to other
sources of reward. Moreover, they also found
that activation in the striatum, as well as me-
dial prefrontal cortex, correlated with the an-
ticipation of the satisfaction that attended the
delivery of the punishment. This latter finding
is consistent with other reward expectancy ex-
periments, generalizing them to an inherently
social signal: punishment of a transgressor of
social norms.

Neuroimaging studies have demonstrated
the engagement of brain reward systems by
other forms of social interaction, including
cooperation and trust. For example, Rilling
& colleagues (2004) used fMRI to probe neu-
ral activity during performance of the iter-
ated Prisoner’s Dilemma, a game commonly
used as a model for studying serial cooper-
ation (in a context in which reputations can
form). They observed that activity in reward-
processing structures were associated with co-
operative interactions, consistent with the hy-
pothesis that these responses reflected the
operation of the mechanism responsible for
incentivizing cooperation and discouraging
nonreciprocation. Robust activations during
cooperation were found in nucleus accum-
bens (ventral striatum), caudate nucleus (dor-
sal striatum), ventromedial prefrontal cortex,

www.annualreviews.org o Imaging Valuation Models in Human Choice

429



Annu. Rev. Neurosci. 2006.29:417-448. Downloaded from arjournals.annualreviews.org
by University of Texas- HOUSTON ACADEMY OF MEDICINE on 06/21/06. For personal use only.

30

and rostral anterior cingulate cortex. All these
regions receive strong dopaminergic projec-
tions (known to carry reward, saliency, and
reward prediction error signals). Thus, like al-
truistic punishment, cooperative social behav-
ior may also engage central reward-processing
mechanisms that can be measured using neu-
roimaging methods.

The findings described above provide ev-
idence that neural mechanisms involved in
valuation are engaged by social as well as
economic exchange, which suggests that the
brain relies on common valuation mecha-
nisms to guide decision-making in diverse
domains. This also suggests an important
way in which neuroimaging methods—as a
means of directly querying underlying mecha-
nisms of valuation—may be particularly valu-
able as a complement to behavioral methods
(i.e., preferences revealed strictly by observing
behavioral choice) for studying valuation in
the social domain. Whereas the valuation of
an isolated good available in the physical en-
vironment may, and optimally should, map
directly onto a corresponding response, this
may not be so when the good appears in
an environment populated by other agents
whose actions can anticipate, respond to,
and influence one’s own. Indeed, such dis-
plays can sometimes be devastating, exposing
the indiscriminant advertiser to exploitation
(e.g., at the most primitive level, indicat-
ing to a predator the most effective direc-
tion of pursuit). Consequently, a strong in-
centive exists to keep such valuation functions
(or parts of them) private, an incentive that
is likely to have exerted considerable evolu-
tionary pressure. In particular, this may have
driven behaviors associated with social ex-
changes in competitive environments to re-
main as opaque to competitors as possible with
respect to underlying valuation mechanisms,
while remaining cooperative enough to gar-
ner profitable exchange with potential part-
ners. In other words, the mechanisms driv-
ing behavior in such circumstances have likely
evolved to keep private exactly how valuable
one perceives particular elements of a social
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exchange to be. Under such conditions, neu-
roimaging methods may provide a valuable
means of peering behind the behavioral cur-
tain and more directly observe the function of
proximal mechanisms of valuation.

IMAGING SOCIAL LEARNING:
REPUTATION, RECIPROCITY,
AND TRUST

The accumulating evidence that similar neu-
ral mechanisms are engaged in the valuation of
social as well as other types of rewards has pro-
duced another potentially valuable dividend:
the promise that quantitative models used
to understand reward-learning processes can
also be used to understand important aspects
of social valuation processes. One example of
progress being made in this direction involves
the use of another economic exchange game
that probes fairness, cooperation, and repu-
tation building: the trust game. This game
was proposed initially in a simple form by
Camerer & Weigelt (1988) and can be seen
as a modified ultimatum game. The singular
feature of the exchange was labeled “trust”
by Berg et al. (1995), a group who put the
game into its modern form used worldwide to-
day. Like the ultimatum game and Prisoner’s
Dilemma, the trust game involves an exchange
between two players in which cooperation and
defection can be parametrically encoded as
the amount of money sent to one’s partner.
On each exchange, one player (the investor)
is endowed with an amount of money. The in-
vestor can keep all the money or decide to in-
vest some amount, which is tripled and sent to
the other player (the trustee) who then decides
what fraction to send back to the investor.
Single round versions of this game have
been played across a wide range of cultural
groups and the modal results are consis-
tent: The investor almost never keeps all the
money, but instead makes substantial offers
to the trustee that could be considered close
to fair splits (Camerer 2003). This move is
typically met with a reasonable (close to fair)
return from the trustee. The initial act of
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trust on the part of the investor entails some
likelihood of a loss (risk), and can be viewed as
a cooperater signal, reflecting a (modally cor-
rect) assumption that the trustee will respond
in kind. This game can be played personally
(nonanonymously) or anonymously, and the
results are basically the same. The risk in-
volved in a unilateral trusting offer is appar-
ently mitigated by other response mechanisms
in the average human’s brain. Just like ob-
served behavior in the ultimatum game, the
rational agent model in its simple form would
not have predicted this experimental result.
Berg et al. (1995) recognized this game as an
embodiment of the problem of trust and the
risk that trusting another human entails; most
modern forms of the game are modifications
of their formulation. One early neuroimag-
ing study used a single-round version of this
game to assess neural responses during such
an exchange (McCabe et al. 2001) and found
differences between playing a computer and a
human.

A recent large-scale fMRI study using a
modified version of this trust game imaged
neural responses simultaneously from both
partners interacting in a multiround version
of the task (King-Casas et al. 2005). The mul-
tiround version (in this case, 10 rounds) al-
lowed reputations (models) to form between
investor and trustee, and simultaneous mea-
surements from the two brains (Montague
et al. 2002) allowed the investigators to ob-
serve correlations in neural activity across the
pair of interacting brains, as these models im-
proved across rounds. Two notable findings
emerged in this study.

First, in a region rich with dopaminer-
gic input (ventral head of the caudate nu-
cleus), neural signals correlated directly with
deviations in tit-for-tat reciprocity. This neu-
ral finding was significant because reciprocity
was the major behavioral signal that explained
changes in the willingness to increase or de-
crease trust (money sent to one’s partner) on
the next move.

The second finding of interest also
emerged from the caudate nucleus in exactly

the region identified as responding strongly
to large changes in reciprocity. Here, in the
trustee’s brain, the time series of neural re-
sponses were examined near the moment
when the investor’s response was revealed
to both players’ brains. In particular, King-
Casas and colleagues (2005) separated neu-
ral responses in this region of the trustee’s
brain according to whether the trustee was
going to increase or decrease money sent
(level of trust) on their next move, yielding
a simple but operational neural correlate of
the trustee’s “intention to change their level
of trust” on that next move. Recall that in
this game, trust was stripped of its normally
rich social meaning and operationalized as the
amount of money sent to one’s partner. As
shown in Figure 2, the most remarkable find-
ing was that the neural correlate of the inten-
tion to increase trust could be modeled di-
rectly as a reinforcement-learning signal (a
reward prediction error signal). This signal
possessed all the features seen in simple condi-
tioned experiments like those summarized in
Figure 24.

Notice in Figure 2 that the intention-
to-increase-trust response began (in early
rounds) by reacting to the revelation of the
investor’s decision and, through learning, un-
derwenta temporal transfer to an earlier point
in time as the reputation of the investor built
up in the brain of the trustee. The timing, con-
tingencies, and change through learning ex-
hibited by this signal possess all the important
features of a reward prediction error signal
similar to that measured in simpler condition-
ing experiments (e.g., like those shown in Fig-
ure 3). One important point from these re-
sultsis that even abstractions like the intention
to trust can engage reward-predicting and ma-
chinery of the midbrain and striatum, and
thereby act themselves as primary rewards.
This suggests one way that ideas in general
may gain the behavioral power to guide goal-
directed behavior; to the rest of the brain,
they acquire the properties of an important
control signal, a primary reward (food, water,
Sex).
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Reinforcement-learning signals during social exchange. A: (Left) Summary of burst and pause responses
in monkey dopamine neurons during reward-learning tasks. The pattern is the same across a range of
experiments. Surprising receipt of reward causes burst responses in a naive animal’s dopamine neurons.
The presence of a temporally consistent predictor of reward induces two changes: (#) response to
formerly surprising reward disappears, and (b) response grows to the earliest predictor. Notice the pause
response if the reward is omitted at the expected time. (Right) This same behavior is seen in a
reinforcement-learning model, plotted here as a TD error signal. Two cues (red and green) consistently
predict reward delivery (blue). After training, the burst response to reward (b/ue) disappears and shifts to
the earliest consistent predictor of reward (red) B: (Left) Average hemodynamic response measured in the
caudate nucleus of trustee brain in a 10-round trust game. Response time series are shown near the time
that investor decisions are revealed and are divided according to whether the trustee increases trust
(money sent) on their next move (black) or decreases its trust on his/her next move (red). The difference
between these curves is significant initially following revelation of investor’s decision (reactive) and, after
reputations form, shifting to time before the investor’s decision is even revealed. (Right) Summary of
hemodynamic responses in left panel at the times indicated by the arrows (adapted from Schultz et al.
1997, Hollerman & Schultz 1998, King-Casas et al. 2005).

Other explanations for these data are pos-
sible. One possibility is that the stratial sig-
nal reflected the monetary rewards associ-
ated with trust. There was a weak, positive
correlation between increases in trust by the
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trustee and changes in the next investment
by the investor. However, in the context of
this game, trust may simply reduce exactly
to a proxy for such an expectation. In fact,
it may be that trust always reduces in this way,
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Imaging computational processes using a
reinforcement-learning model regressor. (70p)
Temporal difference error regressors computed
for all trials in a reward-dependent classical
conditioning experiment. This shows the
predicted TD-error signal expected at the time of
the conditioned stimulus and plotted as a function
of trial number during which reward was
delivered. (Bottom) Statistically significant brain
activation for the regressor computed in the top
panel (p < 0.001) (adapted from O’Doherty et al.
2003).

although the internal currency in different
kinds of exchanges may become substantially
more complex (Montague & Berns 2002).
Nevertheless, the larger point remains: Hu-
mans can frame on this economic exchange,
build models of what to expect from their part-
ner, develop models of their partner’s likely
behavior, and in so doing generate physical
signals in dopamine-rich brain regions that
mimic the properties of a reward prediction
error.

INTERTEMPORAL CHOICE,
EXPLORATION, AND
EXPLOITATION

Virtually all valuation and reinforcement-
learning mechanisms discount the value of
a good with time. That is, a reward avail-
able sooner is considered to be more valu-
able than one that is available later. This cap-
tures the intuitive sense that sooner delivery
is more certain but also concurs with more
abstract considerations (for example, a sum
of money delivered now can be invested and
generate more returns than a sum of money
delivered later). In the models we have dis-
cussed, this idea is expressed as the y param-
eter, which implements an exponential form
of discounting. This form of discounting con-
curs with standard economic models. There,
the use of exponential discounting is moti-
vated by the fact that it ensures consistency
of intertemporal choice—that is, in the rela-
tive preference for goods available at differ-
ent points in time—which is consistent with
(and in fact, a requirement of) the rational
agent model (Koopmans 1960, Ainslie 1975,
Frederick et al. 2002). For example, if one
prefers $1000 today over $1100 in a week, this
indicates that one is discounting the value of
the offer by at least $100 for the delay of a
week. Therefore, one should equally prefer
$1000 to be delivered in a year over $1100 to
be delivered in a year and a week. However,
people often do not conform to this predic-
tion, expressing a preference for the $1100
option in the latter case. This and an over-
whelming number of other behavioral find-
ings concerning intertemporal choice suggest
that humans (and other animals) exhibit much
steeper devaluation over the near term than
is predicted by exponential discounting. Such
behavior is observed almost universally and
has been used to account for a wide variety of
pathologies in human decision-making, from
susceptibility to marketing, to drug abuse, ob-
seity, and the failure of Americans to save
adequately for retirement (Angeletos et al.
2001, Gruber & Botond 2001, Laibson 1997,
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O’Donoghue & Rabin 1997, Loewenstein &
Thaler 1989).

One way to explain this pervasive phe-
nomenon is to assume that the discount func-
tion is hyperbolic rather than exponential
(Herrnstein 1997, Rachlin 2000). This pre-
dicts much steeper discounting in the near
term than in the long term, which in turn can
explain preference reversals (see Figure 24).
However, this explanation begs several impor-
tant questions. Why should exponential dis-
counting, as it is expressed in reinforcement-
learning models, account adequately for the
variety of valuation and learning behaviors
we have reviewed here? In some cases, mod-
els based on exponential discounting pro-
vide quantitatively accurate descriptions of
both behavior and neural function. A sec-
ond more fundamental question is, How does
one justify hyperbolic discounting—where it
is observed—in terms of the rational agent
model favored by standard economic the-
ory? One answer to these questions is to as-
sume that hyperbolic discounting reflects the
operation of more than a single valuation
mechanism. The simplest version of this view
suggests that there are two canonical mech-
anisms: one that has a very steep discount
function (in the limit, valuing only immediate
rewards), and one that treats rewards more ju-
diciously over time with a shallower discount
function (Figure 2B) (e.g., Shefrin & Thaler
1988, Loewenstein 1996, Laibson 1997,
Metcalfe & Mischel 1999).

Recently, neuroimaging evidence has been
brought to bear on the debate over a single
discounting mechanism versus multiple dis-
counting mechanisms. In one study, McClure
et al. (2004) used fMRI to measure neural ac-
tivity in participants as they made intertem-
poral choices similar to the one in the exam-
ple above (although with considerably smaller
sums at stake). When they compared choices
involving the option for an immediate reward
(e.g., a $10 www.amazon.com gift certifi-
cate today or one worth $11 in two weeks)
with choices involving only delayed rewards
(e.g., a $10 gift certificate in two weeks vs
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one worth $11 in four weeks), they found
neural activity in many of the same regions
rich in the dopamine projections we have dis-
cussed here, including ventral striatum and
medial prefrontal cortex. In contrast, other
regions, including dorsolateral prefrontal and
posterior parietal cortex, were activated by all
decisions. These are areas commonly asso-
ciated with more deliberative cognitive pro-
cesses (e.g., calculation, problem-solving, and
reasoning) (Duncan 1986, Stuss & Benson
1986, Shallice & Burgess 1991, Dehaene etal.
1998, Koechlin et al. 1999, Miller & Cohen
2001). Furthermore, for choices that engaged
both sets of mechanisims (i.e., involving an
option for immediate reward), the relative
strength of activity in the two systems pre-
dicted behavior, with greater activity in the
prefrontal-parietal system predicting choices
for the later-but-greater reward. These find-
ings suggest that the brain houses at least
two distinguishable valuative mechanisms,
one of which exhibits properties consistent
with a steep discount function and another
that is more sensitive to the value of future
rewards.

Other recent findings have generalized
these results to primary forms of reward such
as the delivery of small quantities of fluid to
thirsty participants (McClure et al. 2005a).
Such studies have not yet fully character-
ized the form of the discount function used
by each mechanism. However, one reason-
able hypothesis is that the system that ex-
hibits a steep discount function, and involves
areas rich in dopamine projections, reflects
the operation of the same valuation mecha-
nisms that we have discussed in the context
of reinforcement-learning models. If this is
confirmed, it would provide a natural point
of contact between the neuroscience litera-
ture on reinforcement learning and economic
treatments of time discounting. The marriage
of these two rich theoretical traditions, cou-
pled with methods to test quantitative predic-
tions about the proximal mechanisms under-
lying valuation, make this a promising area
of emerging research at the intersection of
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neuroscience, psychology, and economics.

See Figure 4.

Exploitation versus Exploration

Up to this point, our consideration of valu-
ation and learning has assumed that the in-
trinsic value of a reward is stable, meaning
that its value is the same whenever it is en-
countered. However, this is of course not true
in the real world. One may care more about
food when he/she is hungry than when he/she
has just eaten. Similarly, the environment may
change, which will require a change in one’s
valuation function. For example, although one
may be hungry and wish to look for food,
he/she may know thatall the available food has
been eaten and therefore should divert one’s
behavior toward some other goal (i.e., place
greater value on some other reward). These
observations reveal a fundamental challenge
for real-world valuation functions and goal-
directed behavior: the trade-off between ex-
ploitation and exploration.

Exploitation refers to behavior that seeks
to maximize a particular form of reward (i.e.,
achieve a particular goal). Reinforcement-
learning algorithms promote exploitation in
the sense that they favor and progressively
strengthen those behaviors that generate the
most reward.

However, environments, and even an or-
ganism’s own needs, change over time, often
as a product of the organism’s own behavior.
Exploiting an environment for a resource may
deplete the environment of that resource, or
satisfy the organisms need for it, eventually di-
minishing its reward value. When either the
availability of reward or its value changes in
this way, then reinforcement-learning algo-
rithms run into trouble. That is, they are de-
signed to optimize behavior in a stationary
environment—one that does not change, or
changes very little, over time. To address this
fact, an adaptive system must be able to change
its behavior to explore new environments and
identify new sources of reward. Insofar as
changes in the environment, or the organ-

ism’s internal state, increase in likelihood with
time, the tension between exploitation and
exploration aligns with different time scales
of adaptation: Exploitation is about optimiz-
ing performance in temporally local station-
arities, whereas exploration is about adapting
to longer-term time scales, over which change
is likely.

Although the tension between exploitation
and exploration has been recognized in both
the animal learning literature (e.g., Krebs etal.
1978; Krebs and Kacelnik 1984) as well as
work in machine learning (Kaelbling et al.
1996), relatively little work has addressed the
neural mechanisms that regulate the balance
between exploitation and exploration. Re-
cently, however, both neurophysiological and
formal modeling work has begun to suggest
that, like reinforcement learning, neuromod-
ulatory systems play a central role in this func-
tion. In particular, work by Aston-Jones and
colleagues (Aston-Jones et al. 1994, Usher
et al. 1999, Aston-Jones & Cohen 2005) has
suggested that the brainstem nucleus locus
coeruleus (LC), which is responsible for most
of the norepinephrine released in the neocor-
tex, may be critically involved in regulating
the balance between exploitation and explo-
ration. This work suggests that the LC func-
tions in two modes: one in which phasic LC
responses facilitate context-congruent behav-
ioral responses (exploitation), and another in
which such phasic responses are absent but
an increase in tonic LC firing facilitates the
execution of a broader class of behavioral re-
sponses (exploration).

A recent theoretical model proposed by
Yu & Dayan (2005) is consistent with this
hypothesis, which suggests that tonic nor-
epinephrine release may code for unexpected
forms of uncertainty, favoring a shift in the be-
havioral set. Most recently, these ideas have
been extended by McClure et al. (2005) to
propose a model in which cortical valua-
tion mechanisms (in orbitofrontal and ante-
rior cingulate cortex) provide input to the
LC, which in turn adaptively regulates its
mode of function to optimize the operation
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Figure 4

Comparison of different discounting functions. A: The discounted value of two goods available in the
future plotted as a function of time from availability. One is intrinsically more valuable but will be
available at a later time (later-greater) than the other (earlier-lesser). The heavy dotted lines show the
discounted value of each good at the time that the earlier ones becomes available, whereas the lighter
dotted line shows the value of the later good at that same time. Note that, at all times, the value of the
later-greater good (even after discounting for its later availability) is always more than the earlier-lesser
good, including at the time of delivery of the earlier good. B: Value of the same two goods in Panel 4
(with the same differences in value (1) Av(/1) and same temporal offsets in availability (1) At(/1)) but now
computed using a hyperbolic rather than an exponential discount function. Note that for most time prior
to when the earlier good is available, the value of the later good remains greater than that of the earlier
good, as it does for exponential discounting. However, at the time the earlier good becomes available, its
value exceeds that of the later good. This is due to the steep near-term discounting of the hyperbolic
discount function and explains preference reversals seen commonly in human behavior (see text).

C: A discount function composed from two exponential functions, one with a large time constant (red,
“steeply discounting function”) and another with a smaller time constant (b/ze, “shallowly discounting
function”). This function has properties similar to the hyperbolic functions illustrated in Panel B.
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of a dopamine-based reinforcement-learning
mechanism.

CONTEXT-DEPENDENT
MODULATION OF VALUATION
SIGNALS AND COMPETITION
IN DECISION-MAKING

Our review of neuroimaging studies has fo-
cused on a specific set of mechanisms involved
in valuation and decision-making: those that
seem to be well characterized by formal mod-
els of reinforcement learning. In part, this is
because this area of research represents an
exciting and promising convergence of for-
mal modeling and empirical research involv-
ing both neuroimaging as well as neurophysi-
ological methods. However, the review would
be seriously incomplete if we did not consider,
at least briefly, how the mechanisms involved
in reinforcement learning are influenced by
and interact with other mechanisms responsi-
ble for valuation and decision-making in the
brain. Indeed, in many of the studies described
above, the valuation signals observed in classic
reward-processing areas, such as the striatum
and paralimbic cortex (e.g., anterior insula and
medial prefrontal cortex), have been observed
to be modulated by context. That is, they are
not isolated determinants of behavior.

For example, in a recent trust game,
Delgado and colleagues (2005) found that the
response to partner feedback in caudate nu-
cleus was modulated by a form of social prim-
ing. The investigators systematically manip-
ulated the social identity of one’s partner by
telling tales about the partner. In some games
the partner was “praiseworthy,” in some the
partner was “neutral,” and in others the part-
ner was “morally suspect.” The presumed
learning signal evident in caudate was ob-
served in the neutral condition (consistent
with King-Casas et al. 2005) but was lack-
ing in both the positive and negative priming
conditions. This result suggests that learning
parameters are susceptible to modulation by
explicit (and presumably also implicit) biases,
which have been detailed in the social cogni-

tive neuroscience literature (e.g., Lieberman
2005).

Such computations are likely to be sensi-
tive to other noncognitive variables as well.
For example, in a recent report, Kosfeld and
colleagues (2005) actively manipulated sub-
jects’ oxytocin levels, a neuropeptide thought
to be critical in prosocial approach behavior
in human and nonhuman mammals (Insel &
Young 2001, Uvnas-Moberg 1998). Specifi-
cally, Kosfeld et al. examined the effects of
intranasal administration of oxytocin on be-
havior expressed within a trust game similar
to the ones used by King-Casas et al. (2005)
and Delgado et al. (2005). As expected, will-
ingness to trust was enhanced with oxytocin
administration. The specific nature of these
modulatory influences, and their impact on
reinforcement-learning mechanisms, remains
to be explored. However, the collection of re-
sults emerging from the social neuroscience
literature promises to provide valuable con-
straints on the development of formal theory
in this domain.

Finally, a full account of human valuation
and decision-making behavior must go well
beyond the basic mechanisms of reinforce-
ment learning upon which we have focused
here. Many of the studies discussed above
provide evidence that overt behavior is influ-
enced by interactions between different val-
uative and decision-making mechanisms. For
example, the studies of intertemporal choice
revealed that the outcome of decisions be-
tween an immediate-but-lesser versus later-
but-greater reward was correlated with the
relative activity of mechanisms closely associ-
ated with reinforcement learning (such as the
ventral striatum and medial prefrontal cor-
tex) versus higher-level cortical mechanisms
commonly associated with more deliberative
forms of decision-making (such as the dorso-
lateral prefrontal and posterior parietal cor-
tex). Similarly, the decision to accept or reject
an unfair offer in the ultimatum game was
correlated with the relative degree of activ-
ity in insular cortex versus dorsolateral pre-
frontal cortex. These findings suggest that, in
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these circumstances, the outcome of behav-
ior was determined by a competition between
different valuative mechanisms that produced
differing appraisals of the same stimuli and
therefore favored different behaviors. Similar
findings have been observed in other domains
of decision-making, such as moral reasoning
(Greene et al. 2001, Greene & Cohen 2004).

One theme that runs through this work,
and more broadly in fields such as cogni-
tive psychology and behavioral economics, is
that human decision making behavior reflects
the convergent influences of multiple subsys-
tems (e.g., Posner & Snyder 1975, Kahneman
2003). Some of these systems support higher-
level cognitive processes capable of complex,
deliberative forms of evaluation, whereas oth-
ers involve more primitive or specialized and
automatic mechanisms such as reinforcement
learning. Critically, these are likely to use dif-
ferent value functions. Thus, although they
may work synergistically to govern behavior
under many (or even most) circumstances, un-
der others they may produce different ap-
praisals and therefore favor different behav-
ioral dispositions.

Competition between different subsys-
tems reflects a fundamental constraint on val-
uation and decision-making mechanisms in
the brain: There is only one body, and there-
fore only a limited number of actions can be
executed at any time. This poses a primary
challenge for a valuative mechanism, which
is to prioritize the value of competing ac-
tions in any given setting. The constraint of
a single body may pose an even greater chal-
lenge for the brain as a whole, requiring it
to prioritize different valuative and decision-
making mechanisms, when these mechanisms
produce different appraisals of the same cir-
cumstance and thereby favor differentactions.
Recent modeling work has sought to formal-
ize these ideas and give structure to hypothe-
ses concerning interactions between different
types of valuation and decision-making sys-
tems (e.g., Daw et al. 2005). Such work is
critical to achieving a more rigorous under-
standing of the complexity of such interac-
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tions. However, even now, insight provided
by work in this area has begun to reshape
thinking about human behavior in a broad
range of disciplines, from economics to moral
philosophy, and may even have consequences
for broader issues regarding social policy and
the law (e.g., Greene & Cohen 2004, Cohen
2005).

SUMMARY

The neuroimaging findings regarding valua-
tion, decision-making, and learning reviewed
here can be summarized with the three follow-
ing general observations: (#) There is striking
consistency in the set of neural structures that
respond to rewards across a broad range of
domains, from primary ones such as food, to
more abstract ones such as money and social
rewards (including reciprocity, fairness, and
cooperation). (b) Similarly, reinforcement-
learning signals within these domains (evoked
by errors in reward prediction) generate re-
sponses in the same neural structures as those
engaged in simple conditioning tasks. (c) The
dynamics of these signals, both within and
across learning trials, conform to predictions
made by formal models of reinforcement
learning. These findings reveal a remarkable
degree of conservation in both the struc-
ture and function of reinforcement-learning
mechanisms across different domains of func-
tion in the human brain. At the same time, the
function of these mechanisms is clearly mod-
ulated by other systems, and such interactions
are an important, active, and exciting area
of current exploration. Finally, and most im-
portant, reinforcement-learning mechanisms
represent only one valuation and decision-
making system within the brain. A deeper,
more precise understanding of how other val-
uation and decision-making mechanisms are
implemented promises to generate important
new insights into who we are and why we feel
and act the way we do. Such work will impact
awide range of disciplines concerned with hu-
man behavior, from clinical research on drug
addiction, to fields, such as economics and the
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law, that have traditionally been far removed  sign and interpretation of neuroimaging ex-
from neuroscience. We have illustrated that periments, have already begun to provide a
current applications of neuroimaging meth-  solid foundation for work in this area. We look
ods, coupled with the development and use  forward to the rapid progress that is likely to
of formally rigorous theories to guide the de-  ensue in the coming years.
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