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The management and manipulation of our own social image in the
minds of others requires difficult and poorly understood compu-
tations. One computation useful in social image management is
strategic deception: our ability andwillingness tomanipulate other
people’s beliefs about ourselves for gain.We used an interpersonal
bargaining game to probe the capacity of players to manage their
partner’s beliefs about them. This probe parsed the group of sub-
jects into three behavioral types according to their revealed level of
strategic deception; these types were also distinguished by neural
data measured during the game. Themost deceptive subjects emit-
ted behavioral signals that mimicked a more benign behavioral
type, and their brains showed differential activation in right dor-
solateral prefrontal cortex and left Brodmann area 10 at the time
of this deception. In addition, strategic types showed a significant
correlation between activation in the right temporoparietal junc-
tion and expected payoff that was absent in the other groups. The
neurobehavioral types identified by the game raise the possibility
of identifying quantitative biomarkers for the capacity to manipu-
late and maintain a social image in another person’s mind.

decision making | individual differences | neuroeconomics

What do I think about you? What do I think you think about
me? These basic assessments, underlying human social ex-

change, constitute crucial computations that all human brains
must carry out if they are to navigate the complexities of social life.
In larger-scale societies, survival and success hinge on the capacity
to calibrate and monitor one’s social image in the minds of others.
Consequently, the question of how social signals manipulate the
minds of others around us poses one of the central and most dif-
ficult computational problems underlying all social transactions.
Until recently, quantitative neurobehavioral approaches to this
problem have been absent.
The management of social image represents a refinement of the

more thoroughly studied problem of “theory of mind” (1–4). Rather
than simply modeling the goals and behavior of others, managing
a social image requires that we understand that others also have
a theory of our mind along a variety of cognitive dimensions, and
therefore they maintain models of our own goals and behavior. The
“second-order” belief problem of understanding others’ perceptions
of our self is at the heart of any strategic interaction, ranging from
a simple game of cards to a complex business negotiation. To ma-
nipulate our own reputation in the mind of another agent requires
that we estimate the depth to which our partner models our own
mental state and the dimensions along which suchmodeling is likely
to occur. These computations are particularly difficult because es-
timating another individual’s model of oneself is an inherently re-
cursive process—it requires keeping in mind my model of you, my
model of your model of me, and so on (5–7).
One important case of a second-order belief computation is

strategic deception, the manipulation of another person’s beliefs
about one’s own goals or actions for the purpose of personal
gain. For example, when someone bluffs in a poker game she
attempts to change her opponents’ beliefs by mimicking the
behavior of someone with a winning hand. Note that bluffing
inherently requires maintaining a belief about what is true (one’s

own cards) and what another player believes on the basis of your
actions, even when the latter belief is hoped to be false. To carry
this deception out successfully, the player must accurately model
the way in which her behavior will affect her opponents’ per-
ception of the hidden variables in the game (the player’s own
cards), which in turn requires her to have a sufficiently accurate
model of her opponent’s model of her own behavior: how does
this opponent believe you might act with a winning hand? Any-
one who has played poker knows that this model will often in-
clude not only factors based on the structure of the game but also
an understanding of how your own play in previous hands may
have changed your opponent’s beliefs about what type of player
you are: are you the type to bluff? Although bluffing is one of the
more clear-cut examples of the need to compute second-order
beliefs, these computations are at the heart of almost any stra-
tegic interaction. However, not everyone is a good poker player.
The ability to make accurate strategic computations and act
upon them seems to vary greatly by person and context. What
makes one person more strategic than another? Are there neural
signatures of such differences?
A number of brain regions have been identified as parts of

a possible “theory of mind” network. In addition, many areas
known for more general tasks are often implicated in complex
social decision making. For example, the dorsolateral prefrontal
cortex (DLPFC), generally active in tasks involving cognitive
control and complex decision making, has been implicated in so-
cial and theory of mind-related tasks (8, 9). The rostral prefrontal
cortex [Brodmann area 10 (BA10)] has been implicated in a host of
computations from mentalizing to goal maintenance (10–12).
However, the precise computations executed at these loci remain
under debate. Although medial prefrontal cortex seems to be
modulated by deliberation and depth of theory of mind in certain
games (13, 14), it notably fails to correlate with steps of reasoning
in others (15). Similarly, the temporoparietal junction (TPJ) has
been posited as a locus contributing to the maintenance and un-
derstanding of other people’s beliefs (16–18) but has also been
implicated in a host of nontheory of mind tasks, particularly those
involving attentional reorienting (19, 20).
We take a formal approach to this problem by assaying the basic

computational components of these second-order beliefs to probe
their neural underpinnings. To do this, we use a modified version
of a sender–receiver game (21): a bargaining task between two
subjects. Strategic deception in this game requires the ability to
maintain and update another person’s beliefs, indicating the pos-
sible involvement of the TPJ. In addition, the execution of
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sophisticated strategic deception also involves the execution of
a long-term strategy, which requires prospective thinking, active
goal maintenance, and cognitive control—suggesting the involve-
ment of BA10 and DLPFC.
In this game, the “no feedback bargaining task,” two players,

a buyer and a seller, play 60 rounds of a bargaining task (Fig. 1). At
the beginning of each round the “buyer” is informed of her private
value v of a hypothetical object. She is then asked to “suggest
a price” to the seller (values and prices are integers, 1–10). The
seller then receives this suggestion and is asked to set a price p. If
the seller’s price is less than the private value v (which is known
only to the buyer), the trade executes and the seller receives p,
whereas the buyer receives v − p, the difference between the pri-
vate value and the selling price. If the seller’s price exceeds the
buyer’s value, the trade does not execute and both parties receive
nothing. No feedback about whether the trade occurred is pro-
vided to either player.
The tradeable object has no value to either player if a trade

does not occur. However, if a trade does occur, each player pre-
fers a sale price that favors them. Buyers prefer lower prices and
sellers prefer higher prices. This misalignment of incentives
implies that the only equilibrium solution of the one-round ver-
sion of this game is for no information transfer to occur (21). The
buyer should “babble” and send suggestions with no informative
relationship to her private value, and the seller should ignore this
suggestion and set a price of either 5 or 6 (to maximize the
expected revenue). However, this is the mutually optimal solution
only if both players believe that the other is also playing in equi-
librium. That is, babbling is only optimal if the seller is in fact
ignoring buyer suggestions, and ignoring buyer suggestions is only
optimal if they contain no meaningful information. In actuality, in
these types of games players’ beliefs about what others are actu-
ally likely to do are often not accurate (i.e., they are out of equi-
librium). Therefore, descriptive models of belief formation and
adjustment will be more involved than the simple equilibrium
ones (5, 6, 21, 22). Models of this cognitive hierarchy type predict
the existence of different behavioral types on the basis of the
depth to which they model their opponent.

Results
Behavioral Results.Given these conditions, how do buyers actually
play this game? Simple buyer strategies can be detected by re-
gressing the buyer’s private value v against their suggestion s sent
to the seller. We restricted our analysis to the second half of the
experiment to allow strategies to stabilize. From these linear
regressions, we extracted two behavioral descriptors, the slope
and the R2 of the regression, and used these to cluster buyers

into types (Fig. 2). The slope of this regression tracks roughly
with the credibility of the buyer’s suggestion (i.e., this slope
tracks with how “good” the information contained in the sug-
gestions is). If the slope is high, sellers should trust the in-
formation, and conversely if the slope is near zero, suggestions
contain no information. In the interesting case in which the slope
is negative, suggestions are actively misleading. Thus, we refer to
this slope as a buyer’s “information revelation” coefficient (IR).
The buyers fall into three distinct clusters: the “incrementalist”

group (n = 32, blue) is characterized by a relatively high IR and
high fit (large R2). They are relatively honest with their price
suggestions (the group mean slope is 0.57, consistent with sug-
gesting prices equal to approximately half of the buyer’s value,
possibly to share the gains from trade equally). The “conservative”
group (n = 28, green) generally show IRs close to zero and in-
termediate or low fit. Their suggestions may still contain in-
formation about the underlying value, but notmuch. Some of these
actually had constant strategies and always sent a suggestion of 1.
The third group, the strategic deceivers, or “strategists” (n = 16,
red), are the most interesting. These buyers send suggestions that
are negatively correlated with their private value. Because there is
no feedback to either player after each trade, these strategic types
have surmised that as long as they send a sequence of suggestions
that mimics an incrementalist type, they should be able to make
higher profits. For example, if they receive a value of 2, they will
forego an immediate profit (which would be low at best) and send
a high suggestion (for example, 8). Then when they get a high
value, they can credibly send a low suggestion and reap a high
profit from an unsuspecting seller. In addition to this data-driven
clustering, we developed and estimated a model of belief forma-
tion, described in SI Methods, that predicts the existence of these
three types of players independently, with each type possessing
different depths or “levels” of theory of mind. The most sophisti-
cated of these, the ones who reasoned most deeply about their
opponents, should exhibit a negative IR. We designated these as
“level-2” players. When we estimated this model on our subjects,
we found that 14 of our 16 strategists were correctly classified as
level-2 players. These level-2 subjects are designated by the tri-
angles in Fig. 2A.
We assessed intelligence quotient (IQ) in 30 of our 76 subjects

(11 incrementalists, 9 conservatives, and 10 strategists) and found
that although incrementalists IQs were suggestively lower than
conservative and strategist IQs, there were no significant differ-
ences among the three groups using a one-way ANOVA. More
importantly, there was significant overlap among the three dis-
tributions, and there was no significant difference between con-
servative and strategist IQs. This shows that IQ alone does not
account for the differences in behavior, and although above-
average IQ seems to be a necessary condition for strategist be-
havior, it is not sufficient (Fig. 3A). We also assessed socioeco-
nomic status in 65 of our 76 subjects and found no significant
differences among the three groups (Fig. 3B). Overall, earnings
were significantly lower in the incrementalists group than in the
other two. Although there was no significant difference in mean
earnings between conservatives and strategists, conservative
earnings fell over a larger range, including many of the lowest and
highest earnings overall (Fig. 3C). This is consistent with the
cognitive hierarchy model because the superiority of the strategist
or conservative approach to the game is dependent on the so-
phistication of the seller (i.e., the conservative approach does well
against a credulous seller but does poorly against a more sophis-
ticated, “level-1” seller).
Subject debriefing in the form of a free-response question ad-

ministered after the experiment confirmed that the strategic
deceivers were aware and deliberate in mimicking a distribution of
suggestions that might be expected from a more truthful in-
dividual. One subject wrote “I tried to throw off [the] seller by
saying the low things were high. . ..” This comment, and other

Fig. 1. Experimental task. At the beginning of each round the computer
assigns a value for the widget to the buyer. The buyer “suggests a price” to
the seller, who uses this information to set a final price for the object. The
computer automates whether the deal occurs—if the price is less than or
equal to the buyer’s value, the seller receives the price, p, and the buyer
receives the difference between the price and his private value, v − p.
Otherwise, the deal fails and neither party receives anything. Neither party is
informed of the outcome of the previous trial; payoffs are just added to
a running tally of points kept by the computer.
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similar comments, showed a conscious and sophisticated model of
how their suggestionsmight be processed by the seller over time. In
contrast, the conservatives often simply stated that they always
desired lower prices and therefore sent low suggestions, reflecting
a simpler model of seller behavior. Finally, incrementalists tended
to be more vague in their descriptions of their strategies than the
other two groups.

Functional MRI Results. To probe the neural underpinnings of
strategic behavior in buyers, we performed two sets of analyses.
First, we performed between-group (defined by the behavioral

clustering) comparisons of neural activity at various trial epochs.
Second, we regressed buyers’ neural activity against the buyer’s
IR coefficient at those same epochs. As with the behavioral data,
we restricted our analysis of the functional MRI (fMRI) data to
the second half of the experiment to allow strategies to stabilize.
Between-group comparisons over the individual subject first-

level boxcar regressors over the entire trial (onset to decision)
revealed two significant main effects of behavioral type that sur-
vive correction for multiple comparisons at the P < 0.05 level
(either corrected for familywise error over gray matter at peak
voxel, or cluster-level correction at P < 0.001, k > 5). First,

Fig. 2. Behavioral analysis. (A) Behavioral clustering in buyers. Incrementalists (blue) send suggestions that are highly correlated with their true value.
Strategists (red) send suggestions that are negatively correlated with value. Strategists appear similar to incrementalists and thus reap the surplus from high-
value trials. Conservative buyers (green) play closest to an economically rational actor and reveal no information about their value with their suggestions.
Triangles indicate subjects who were classified as sophisticated “level-2” buyers according to a generative model. (B) Mean Kullback-Leibler (KL) distances of
the players’ choice distribution from the uniform distribution. Incrementalists and strategists are both significantly closer to the uniform distribution than
conservatives but are not significantly different from each other. (C) Histograms showing suggestion frequencies for a single incrementalist (Left) and a single
strategist (Right). Note that from the perspective of the seller the two are indistinguishable.

Fig. 3. Group differences were not explained by differences in IQ or socioeconomic status. (A) Although incrementalists had suggestively lower IQs than
strategists or conservatives, this was not quite significant (P = 0.07, one-way ANOVA). However, both conservative and strategist IQs were significantly higher
than average, whereas incrementalist IQs were not (11 incrementalists, 9 conservatives, and 10 strategists came back to take the IQ test); there was no
significant difference between strategist and conservative IQs. (B) We also assessed socioeconomic status on 65 subjects using income, occupation, and
education level and found there were no significant differences among the three groups according to one-way ANOVA. (C) Subject earnings by behavioral
type: incrementalists had significantly lower final payments for the experiment (P = 0.02, one-way ANOVA); there was no significant difference in means
between conservative and strategist earnings. Colored sections of the box-plots indicate the interquartile interval of the data, and whiskers show the total
data extent excepting outliers, which are shown as red crosses. The black lines indicate the median data, and the notched section of the box gives a 95%
confidence interval for the median.
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strategists show a differentially higher activation in left rostral
prefrontal cortex (BA10) shown in Fig. 4A, whereas incremen-
talists show differentially lower activation in the right DLPFC
(rDLPFC) (Fig. 4B). In addition to these main effects, we found
a significant (P < 0.005 at peak voxel, corrected for familywise
error over gray matter) group × value (individual subject βs for
the value at onset regressor) interaction in right TPJ (rTPJ) (Fig.
5). All three of these activations were significant at the P < 0.001
(uncorrected) level in the secondary analysis using IR as a con-
tinuous between-subject regressor. Both the rDLPFC and rTPJ
activations also survived correction for multiple comparisons in
this secondary analysis. Full statistics for both analyses are
reported in SI Methods.
To further understand the nature of these activations we ex-

amined the time series of activity across the three groups in the
identified regions. Confirming the whole-brain analysis, strategist
activity in BA10 (Fig. 4A, Right) is significantly greater than for
both conservatives and incrementalists, whereas conservative and
incrementalist time courses were essentially identical. On the
other hand, in the rDLPFC (Fig. 4B, Right), time course analysis
reveals that although the area was characterized by decreased
activation in the incrementalists, conservatives show an in-
termediate level of activation, between the activities of the incre-
mentalists and the strategists. Finally, in the rTPJ (Fig. 5, Right
panel), strategists showed a strong relationship between activation
and value, which was absent in the other two groups.

Discussion
From a neural standpoint our understanding of social interactions
is in its infancy. The present study attempts to shed light on an
important aspect of social interaction: the understanding and
manipulation of others’ perceptions of us. Second-order belief
formation is particularly interesting because there seems to be
a wide range of abilities within the scope of normal human be-
havior. Indeed, in this simple bargaining task we used task be-

havior to uncover three distinct clusters of buyers. Further, fMRI
revealed distinct neural correlates associated with these clusters.
To display strategic deception, subjects had to be able to con-

sider the implications of current decisions on future payoffs and
especially consider the counterfactual situation of what might
happen if they chose the conservative strategy and engendered too
much suspicion in the seller. This also requires the maintenance
and continual updating of the “false beliefs” of their opponent, as
well as cognitive control mechanisms necessary to inhibit the im-
pulse to transfer information. In contrast, the conservatives only
need to inhibit information transfer, and the incrementalists’ naïve
strategy simply anchors suggestions directly to the true value.
TPJ has been found repeatedly to be active in theory of mind

tasks, particularly in the attribution of false or incongruent beliefs
to another person (16, 19, 23). It is interesting that rTPJ activity is
modulated by value rather than simply being more active in
strategists, as might be expected. Saxe andWexler (17) found that
signals in the rTPJ were modulated by the degree of incongruence
among multiple facts known about a target’s mind. This finding
shapes our interpretation of the modulation of activity in rTPJ
by value in strategists: it is during the high-value trials that the
strategists’ bluff really matters. Even though strategists are de-
ceiving during both high- and low-value trials, and their sugges-
tions are always incongruent with their true value, the payoff only
comes during the high-value trials. Additionally, strategists are ef-
fectively switching between twomodes of behavior: reputation build-
ing, which occurs during low-value trials, and reward-collection,
which occurs during high-value trials. This switch between atten-
tion to one’s reputation and attention to one’s actual payoffs is an
example of attentional reorienting that has been associated with
activity in TPJ (20). This activation also bears striking similarities
to a nearby activation in superior temporal sulcus (STS) found
by Hampton et al. [The reported peaks are close together, but
do not appear to overlap: (52, −48, 20) for right TPJ in this
study; (60, −54, 9) for STS in Hampton et al.] (13). In this article,

Fig. 4. Strategists differentially activate rDLPFC and left BA10. (A) Between-group analysis: strategist activation over the entire trial vs. other groups. Left: Left
BA10. Peak voxel at (−32, 48, 20), k = 14, t = 4.72, P = 0.049 at peak voxel (corrected for familywise error over graymatter). Right: Time courses in BA10 by group.
(B) Between-group analysis: incrementalist activation over the entire trial vs. other groups. Left: rDLPFC. Peak voxel at (36, 28, 36), k = 27, t = 4.62 at peak voxel,
cluster-level P = 0.044 (corrected). Right: Time courses in rDLPFC by group. For both regions clusters are shown at P < 0.001, uncorrected. Cluster extents and
cluster-level Ps are reported at this threshold as well. Full statistics are reported in SI Methods. For time courses, all data are normalized to trial onset, dotted
black line indicates average decision time, and asterisks indicate significance of the one-way ANOVA on activation at peristimilus time at the P < 0.01 level.
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bilateral STS activation was correlated with an “influence” pa-
rameter in a behavioral model. Interestingly, this parameter
correlated with both expected reward and strategic switching in
their task, much as high-value trials correlate to expected return
and strategic switching in the strategists.
BA10 has been implicated in long-term goal maintenance and

the use of prospective memory (10, 24), vital aspects of the
strategists’ forward-looking behavior. Burgess et al. propose
a medial/lateral functional mapping of this region according to
whether mental processing is stimulus oriented or stimulus in-
dependent, with the latter being associated with more lateral
activations. This is consistent with our interpretation of the
relatively lateral activation (x = −32) in BA10 as corresponding
to the need for prospective thinking and goal maintenance in
the strategist approach. As mentioned above, unlike incremen-
talists or conservatives, strategists have a distinct intermediate
goal in the pursuit of reward: reputation building. The mainte-
nance of the relatively long-term goal as a means to greater
overall and future rewards is consistent with the stimulus-
independent processing attributed to the area. The relative lack
of activation at this locus for the other two groups (as well as the
similarity of activity levels between the two other groups) ac-
curately reflects the leap in task complexity between the con-
servative and strategist approaches.
On the other hand, rDLPFC shows a more continuous re-

lationship between activation and strategic sophistication. Of
the three areas highlighted here, it is the only one where the
analysis using IR as a continuous between-subject regressor
yielded a larger activation than the between-group analysis (k =
31 vs. k = 27; SI Methods provides full statistics on both anal-
yses). The area has been consistently implicated in tasks in-
volving working memory and cognitive control (25, 26). Both of
these are functions that should be used by strategists, who must
keep track of their previous suggestions to infer what their
reputation is with the seller and inhibit the impulse to simply
anchor their suggestion on their true value. The cognitive con-
trol function of rDLPFC in this task is further highlighted by the
fact that conservatives also have elevated activity in the area as
compared with incrementalists. One transcranial magnetic
stimulation (TMS) study showing that disruption in rDLPFC re-
duces intertemporal building of a trustworthy reputation (but
only when other people are highly trusting) is consistent with
this cognitive control function of rDLPFC in strategizing (27).
The patterns of activity uncovered in the strategists uncover

a set of regions involved in the successful manipulation of others’
beliefs over time. BA10 is strongly recruited in strategists but not
in incrementalists or conservatives. rDLPFC is recruited strongly
by strategists, with some variance by conservatives, and weakly by

incrementalists. Finally, the rTPJ, important for the attribution
of false or incongruent beliefs to others and attentional reor-
ienting, is strongly activated during strategist bluffing.
Human strategic thinking is both complicated and highly adap-

tive, driven by the coevolution of complex artificial socioeconomic
environments and the mind’s capacity to navigate those environ-
ments. Earlier studies have established neural correlates of the
capacity to reason about other agents’ likely behavior (14, 28) and
the ability to learn from social information (29). Our study goes an
important step further, by shedding light on how some agents
make choices to manipulate other agents’ perceptions of their own
strategies. The pairing of the behavioral and neural data strongly
suggests that strategists are guided in their deceit by the more
schematic, forward-looking computations of BA10 and TPJ, in
concert with heightenedmemory and control provided byDLPFC.
It remains to be seen how a given individual finds herself in one
group or the other: is strategic ability inherent, or can we train
individuals to more easily identify strategic solutions by empha-
sizing the use of schematic representations and counterfactual
analysis? Is strategic ability context dependent? Whatever the
case, opportunities for strategic deception of this sort are possible
only because of the existence, and in fact likely relative prevalence,
of people with the tendency to be honest even when such honesty
is not in their interest. However, in our admittedly circumscribed
situation it is clear that there are three distinct classes of individ-
uals who approach this strategic interaction in completely differ-
ent ways and that these differences are manifest in qualitatively
different neural signatures.
Our results suggest a method of understanding and quantify-

ing individual differences—as clusters of behavior in an eco-
nomic game (9)—and point to applications for the definition and
diagnosis of mental disorders. Economic games can provide
objective quantitative measures of strategic thinking (as in this
study), social preferences (30, 31), risk preferences (32, 33), and
a host of other potentially interesting characteristics. A better
understanding of the range and joint distributions of these fac-
tors in the population could provide insight into those individuals
who fall at the extremes of these distributions (i.e., those with
mental disorders).

Methods
We regressed buyers’ suggestions on their private values over the second
half of the experiment, yielding three descriptive strategy parameters for
each buyer—the slope, intercept, and fit (R2). We normalized these three
statistics across subjects by subtracting means and dividing by SDs. Clusters
were identified using the k-means algorithm (34). The clusters did not
change significantly when intercepts were excluded, therefore the results in
the text are clustered using only slope and fit.

Fig. 5. Value modulates rTPJ activation only in the strategists. Between-group analysis: interaction of activation at trial onset with value, incrementalists vs.
other groups. Left: rTPJ. Peak voxel at (52, −48, 20), k = 10, t = 5.41, P = 0.004 at peak voxel (corrected for familywise error over gray matter). Full statistics are
reported in SI Methods. Right: Time courses in rTPJ by group.
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fMRI datawere collected using 3-T Siemens scanners on 76 healthy subjects
recruited in accordance with a protocol approved by the Baylor College of
Medicine Institutional Review Board. High-resolution T1-weighted scans
were acquired using a magnetization prepared rapid gradient echo se-
quence. Functional images were acquired with a repetition time of 2,000 ms
and echo time of 25 ms. Thirty-seven 4-mm slices were acquired 30° off
the anteroposterior commissural line, yielding functional voxels that were
3.4 mm × 3.4 mm × 4 mm.

Data were preprocessed using SPM2 algorithms (http://www.fil.ion.ucl.ac.
uk/spm/software/spm2/) for slice–timing correction, motion correction, cor-
egistration, gray/white matter segmentation, and normalization to the Mon-
treal Neurological Institute template. Functional images were smoothed
spatially using an 8-mm Gaussian kernel. All data were high-pass filtered
(128 s); the regression error structure was assumed to be AR(1). Post-
preprocessing voxels were 4 mm × 4 mm × 4 mm.

We considered two general linear models (GLMs). Key presses, head mo-
tion, and time derivativeswere included as nuisance regressors in bothmodels.
The first model used separate point regressors at trial onset and decision,
parameterized by value and suggestion, respectively. A nuisance regressor for
selector appearance was also included. The second model used a boxcar re-
gressor beginning at trial onset and ending at decision, parameterized by
value and suggestion. Both analyses used separate regressors for events in the
early (first 30) as opposed to late (second 30) trials of the experiment.
Regressors were convolved with the standard hemodynamic response func-
tion. A gray matter mask was used for the second-level analysis, excluding
voxels that were less than 40% likely to be gray matter.

After regions of interest were identified from the whole-brain GLMs time
series were extracted in each cluster and averaged to produce time courses
anchored to events of interest.
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